
This article was downloaded by: On: 22 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Asian Natural Products Research

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713454007

Quinquenoside L_o from Leaves and Stems of Panax Quinquefolium L

Jinhui Wang^a; Yi Sha^a; Wen Li^a; Yasuhiro Tezuka^b; Shigetoshi Kadota^b; Xian Li^a ^a Department of Natural Product Chemistry, Shenyang Pharmaceutical University, Shenyang, China ^b Research Institute for Wakan-Yaku (Traditional Sino-Japanese Medicines), Toyama Medical and Pharmaceutical University, Toyama, Japan

To cite this Article Wang, Jinhui , Sha, Yi , Li, Wen , Tezuka, Yasuhiro , Kadota, Shigetoshi and Li, Xian(2001) 'Quinquenoside L_9 from Leaves and Stems of *Panax Quinquefolium* L', Journal of Asian Natural Products Research, 3: 4, 293 – 297

To link to this Article: DOI: 10.1080/10286020108040369 URL: http://dx.doi.org/10.1080/10286020108040369

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

JANPR, Vol. 3, pp. 293-297 Reprints available directly from the publisher Photocopying permitted by license only

QUINQUENOSIDE L₉ FROM LEAVES AND STEMS OF *PANAX QUINQUEFOLIUM* L.

JINHUI WANG^{a,*}, YI SHA^a, WEN LI^a, YASUHIRO TEZUKA^b, SHIGETOSHI KADOTA^b and XIAN LI^a

^aDepartment of Natural Product Chemistry, Shenyang Pharmaceutical University, Shenyang 110015, China; ^bResearch Institute for Wakan-Yaku (Traditional Sino-Japanese Medicines), Toyama Medical and Pharmaceutical University, Toyama 930-0194, Japan

(Received 21 August 2000; In final form 22 September 2000)

During additional chemical investigation on the saponin composition of leaves and stems of *Panax quinquefolium* L, a new minor dammarane saponin, quinquenoside L₉ (1) has been obtained. By means of physico-chemical evidences and spectral analysis, its structure was elucidated as 6-O- $[\alpha$ -L-rhamnopyranosyl-(1-2)- β -D-glucopyranosyl]-dammara-3 β ,6 β , 12 β ,20(S),24 ζ ,25-hexaol (1).

Keywords: Panax quinquefolium L.; Leaves and stems; Araliaceae; Chemical study; Triterpenoid saponin; Quinquenoside L_9

INTRODUCTION

American ginseng (the root of *Panax quinquefolium* L.) is well known for its tonic value worldwide, the leaves and stems of *Panax quinquefolium* L. also show similar medical effects in recent research. Chemical investigations on them have been reported by us [1, 2]. In a continuation of investigation on saponin composition of leaves and stems of *Panax quinquefolium* L., we report here the isolation and structural elucidation of another new minor saponin, quinquenoside L_9 .

^{*}Corresponding author. Fax: +86-24-23896576, e-mail: lixian@pub.sy.lnpta.net.cn

RESULTS AND DISCUSSION

Quinquenoside L_9 (1) was isolated by silica gel column chromatography and HPLC of the saponin fractions in a yield of 0.00003%.

Quinquenoside L₉ (1) was obtained as white needles, mp $155 \sim 157^{\circ}$ C (MeOH). Liebermann-Burchard and Molish reactions were positive. The quasimolecular ion peaks at m/z 819.5125 (C₄₂H₇₄O₁₅H, calcd. 819.5106), 841.4949 (C₄₂H₇₄O₁₅Na, calcd. 841.4925) in the HR-LRMS of **1** allowed its molecular formula to be C₄₂H₇₄O₁₅.

Saponin (1) showed a close resemblance with ginsenoside Rg_2 [3] in their ¹³CNMR spectra (100 MHz, C_5D_5N), the only difference between them was observed in the side-chains. Ginsenoside Rg₂, which has a common sidechain in ginsenosides, showed resonances at δ 126.28 and δ 130.78 for C-24 and C-25, respectively, while saponin 1 had no double-bond carbon signal. The ¹HNMR spectral data (400 MHz, C_5D_5N) of saponin 1, indicated that saponin 1 has a 24,25-dihydroxyl moiety as vina-ginsenoside $-R_{12}$ and $-R_{13}$ [4]. The coupling system of this side-chain was established as follows. In the ¹H-¹H COSY spectrum of 1, two geminal proton signals at $\delta 2.07$ and $\delta 2.21$ (H-23) correlated not only with the proton signal at $\delta 3.82$ (1 H, dd, J = 7.0, 4.0 Hz, H-24), but also with other two geminal proton signals at δ 1.75 and δ 2.49 (H-22). In the HMBC spectrum of 1, long-range correlations were observed between the proton signal at $\delta 3.82$ (H-24) and two methyl carbon signals at 825.85, 26.09 (C-26, 27), 833.62 (C-22) and δ 72.69 (C-25), and between the methyl proton signal at δ 1.42 (H-21) and carbon signals at δ 54.42 (C-17) and δ 33.62 (C-22). Up to these points it could be concluded that the two hydroxyl groups might be located at C-24 and C-25. By comprehensive analyses of 2D-NMR spectra, the ¹H and ¹³CNMR spectral data of **1** were unequivocally assigned as shown in Table I.

Acid hydrolysis of saponin 1 yielded D-glucose and L-rhamnose. The ¹H and ¹³CNMR spectra demonstrated that saponin 1 has a β -D-glucopyranosyl and a α -L-rhamnopyranosyl moieties. In the HMBC spectra, the long-range correlations were observed between an anomeric proton signal at δ 5.26 (d, J=7.2 Hz, glc-1') and carbon signal at δ 74.33 (C-6), and between an other anomeric proton signal at δ 6.48 (br.s, rham-1") and the carbon signal at δ 78.52 (glc-2'). Thus, the structure of saponin 1 was established as 6-O-[α -L-rhamnopyranosyl-(1-2)- β -D-glucopyranosyl]-dammara-3 β ,6a,12 β ,20(S),24 ζ ,25-hexaol, named quinquenoside L₉.

			IABI	IABLE 1 The NMK data of quinquenoside L ₉ (1	data of quir	iquenoside L ₉ (I)			
No.	H_1		COSY	HMBC	No.	H_1	^{13}C	COSY	HMBC
-	0.59, 1.63	39.36	H-2		23	2.07, 2.21	26.67	H-22, 24	
2	$1.7 \sim 1.9$	27.70	H-1, 3		24	3.82(dd, 7.0, 4.0 Hz)	80.07	H-23	C-22, 25, 26, 27
e	3.48(dd, 6.0, 2.0 Hz)	78.28	H-2	C-4, 28, 29	25		72.69		
4		39.93			26	1.50 (3H, s)	25.85		C-24, 25, 27
5	1.49	60.76	H-6	C-4, 6, 19	27	1.53 (3H, s)	26.09		C-24, 25, 26
9	4.68(br.t, 6.0 Hz)	74.33	H-5, 7		28	2.11 (3H, s)	32.13		C-3, 4, 5, 29
7	1.96, 2.25	45.98	9-H		29	1.35(3H, s)	17.59		C-3, 4, 5, 29
8		41.12			30	0.94 (3H, s)	16.86		C-8, 13, 14, 15
6	1.53	49.77	H-11		6-glc				
10		39.57			1,	5.26(<i>d</i> , 7.2 Hz)	101.73	H-2′	C-6
11	1.46, 2.08	32.01	H-12		2,	4.38	78.52	H-1′, 3′	
12	3.88(dt, 7.0, 2.5 Hz)	70.96	H-11, 13		3,	4.33	79.34	H-2′, 4′	
13	2.03	48.07	H-12, 17		, 4	4.21	72.51	H-3′, 5′	
14		51.68			5'	3.96	78.28	H-4', 6'	
15	0.87, 1.50	31.40	H-16		6'	4.35	63.10	H5′	
16	1.27, 1.81	26.97	H-15, 17	7	2'-rham				
17	2.31	54.42	H-13, 16	C-13, 20, 21	1"	6.48(br.s)	101.87	H-2″	C-2/
18	1.17 (3H, s)	17.07		C-7, 8, 9, 14	7	4.79	72.36	H-1", 3"	
61	0.96 (3H, s)	17.53		C-1, 5, 9, 10	3"	4.66	72.24	H-2″, 4″	
20	× •	73.21			4"	4.32	74.12	H-3", 5"	
21	1.42 (3H, <i>s</i>)	27.34		C-17, 20, 22	5"	4.95	69.38	H-4", 6"	
22	1.75, 2.49	33.62	H-23		9"	1.78(3H, d, 6.0 Hz)	18.65	H-5″	C-4", 5"

TABLE I The NMR data of quinquenoside L₉ (1)

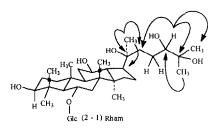


FIGURE 1 HMBC correlations of quinquenoside L₉ (1).

EXPERIMENTAL SECTION

General Experimental Procedures

The melting point was determined on Yanaco MP-S3 Micro-hot stage and are uncorrected. HR-MS data were taken on a JEOL JMS-700T spectrometer. UV spectrum was taken in MeOH on Shimadzu UV-260 spectrophotometers. NMR spectra were taken in pyridine- d_5 on a JEOL JNM-GX 400 spectrometer, 2D-NMR experiments were carried out with standard pulse sequences. For HPLC (Shimadzu-6A system), a Shimadzu CTO-6A apparatus with ODS (20 mm i.d., 25 cm) column and UV-detector was used. For CC, silica gel H (10–40 μ , Qingdao) and highly porous polymer D101 (Qingdao) were used. Hydrolysis of saponin with mineral acid and identification of the resulting sugar with TLC were performed as described by Zhao [5].

Plant Material

The leaves and stems of *Panax quinquefolium* L. were collected from Canada by Dalian Tianma Pharmacy Co. LTD, and identified by Professor Tiande Qing.

Extraction and Separation of Saponins

Dried leaves and stems of *Panax quinquefolium* L. (2.0 Kg) were extracted with hot water (201 × 3), the water soluble fraction was extracted successively with CHCl₃ and *n*-BuOH. The *n*-BuOH soluble fraction was subjected to column chromatography on reversed-phase highly porous polymer, D101 (2.0 Kg), with H₂O (401) and 95% EtOH (401) as eluting solvents, affording a H₂O fraction and an EtOH fraction (312 g). A part of the EtOH fraction (100 g) was chromatography over silica gel {gradient elution with CHCl₃-MeOH [100:1 (I); 100:2 (II); 100:8 (III); 100:9 (IV); 100:12 (V); 100:15 (VI, VII); 100:18 (VIII); 100:20 (IX); 100:30 (X); 100:40 (XI)]} to provide eleven fractions in increasing order of polarity. Fraction VIII was separated into ten fractions, frs. VIII a - VIII j, by HPLC (ODS, solvent: 75% MeOH, flow rats: 4 ml min⁻¹; detection UV at 198 nm.). From frs. VIII h, saponin 1 was obtained as white needles (0.00003% yield).

Quinquenoside L₉ (1), white needles, mp $155 \sim 157^{\circ}$ C (MeOH). Liebermann-Burchard and Molish Reactions were positive. LR-MS: 819 (M+H), 841 (M+Na), HR-MS: 819.5125 (C₄₂H₇₅O₁₅H, cal. 819.5106), 841.4949 (C₄₂H₇₂O₁₅Na, cal. 841.4925), ¹H-NMR (400 MHz, C₅D₅N) and ¹³C-NMR (100 MHz, C₅D₅N) data see Table I.

Acknowledgements

We are grateful to Professor Tiande Qing for identification of the plant material. Thanks also for Dalian Tianma Pharmacy Co. LTD.

References

- [1] Li, Z., Guo, Y. Y., Wu, C. F., Li, X. and Wang, J. H. (1999). J. Pharm. Pharmacol., 51, 435-440.
- [2] Wang, J. H. and Li, X. (1997). Chinese J. Med. Chem., 7(2), 130-132.
- [3] Iwomoto, M., Fujioko, T., Okabe, H., Mihashi, K. and Yamauchi, T. (1987). Chem. Pharm. Bull, 35(2), 553-561.
- [4] Duc, N. M., Kasai, R., Ohtani, K., Ito, A., Nham, N. T., Yamasaki, K. and Tanaka, O. (1994). Chem. Pharm. Bull, 42(1), 115-122.
- [5] Zhao, P., Liu, Y. Q. and Yang, C. R. (1993). Acta Bot Yunnanica, 15, 409-412.